
QASMTrans: A QASM basedQuantum Transpiler Framework for
NISQ Devices

Fei Hua
Pacific Northwest National

Laboratory
Richland,USA

Rutgers University
New Jersey, USA

Meng Wang
The University of British Columbia

Vancouver, Canada
Pacific Northwest National

Laboratory
Richland, USA

Gushu Li
University of Pennsylvania

Pennsylvania, USA

Bo Peng
Pacific Northwest National

Laboratory
Richland, USA

Chenxu Liu
Pacific Northwest National

Laboratory
Richland, USA

Muqing Zheng
Pacific Northwest National

Laboratory
Richland, USA

Samuel Stein
Pacific Northwest National

Laboratory
Richland, USA

Yufei Ding
University of California San Diego

California, USA

Eddy Z. Zhang
Rutgers University
New Jersey, USA

Travis S. Humble
Oak Ridge National Laboratory

Tennessee, USA

Ang Li
Pacific Northwest National

Laboratory
Richland, USA

ABSTRACT
The success of a quantum algorithm hinges on the ability to or-
chestrate a successful application induction. Detrimental overheads
in mapping general quantum circuits to physically implementable
routines can be the deciding factor between a successful and erro-
neous circuit induction. In QASMTrans, we focus on the problem
of rapid circuit transpilation. Transpilation plays a crucial role
in converting high-level, machine-agnostic circuits into machine-
specific circuits constrained by physical topology and supported
gate sets. The efficiency of transpilation continues to be a sub-
stantial bottleneck, especially when dealing with larger circuits
requiring high degrees of inter-qubit interaction. QASMTrans is a
high-performance C++ quantum transpiler framework that demon-
strates 3-1111× speedups compared to the commonly used Qiskit
transpiler. We observe speedups on large dense circuits such as
‘uccsd_n24’ which require O(106) gates. QASMTrans successfully
transpiles the aforementioned circuits in 7.9s, whilst Qiskit needs
502 seconds with optimization 1 and exceeds an hour of transpila-
tion time with optimization 3. With QASMTrans providing tran-
spiled circuits in a fraction of the time of prior transpilers, potential
design space exploration, and heuristic-based transpiler design

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
SC-W 2023, November 12–17, 2023, Denver, CO, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0785-8/23/11. . . $15.00
https://doi.org/10.1145/3624062.3624222

becomes substantially more tractable. QASMTrans is released at
http://github.com/pnnl/qasmtrans.

CCS CONCEPTS
• Computer systems organization → Quantum computing;
• Hardware → Quantum computation; • Software and its
engineering→ Compilers.

KEYWORDS
QASMTrans, Compiler, IO, Optimizaton

ACM Reference Format:
Fei Hua, Meng Wang, Gushu Li, Bo Peng, Chenxu Liu, Muqing Zheng,
Samuel Stein, Yufei Ding, Eddy Z. Zhang, Travis S. Humble, and Ang Li.
2023. QASMTrans: AQASMbased QuantumTranspiler Framework for NISQ
Devices. In Workshops of The International Conference on High Performance
Computing, Network, Storage, and Analysis (SC-W 2023), November 12–17,
2023, Denver, CO, USA. ACM, New York, NY, USA, 10 pages. https://doi.org/
10.1145/3624062.3624222

1 INTRODUCTION
The past decade has witnessed tremendous development in Noisy
Intermediate-Scale Quantum (NISQ) computers [9, 35], where a few
hundred physical qubits are available with relatively limited co-
herence times and high error rates. These NISQ machines, while
offering great potential, are constrained by various factors such as
non-trivial noise [26][41], limited connectivity [6] and machine-
specific basis gate sets [25]. Due to the limited qubit number and
short coherence time, effectively mapping application circuits to the
constrained NISQ machine poses a considerable challenge and can

1468

https://doi.org/10.1145/3624062.3624222
https://doi.org/10.1145/3624062.3624222
https://doi.org/10.1145/3624062.3624222
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3624062.3624222&domain=pdf&date_stamp=2023-11-12

SC-W 2023, November 12–17, 2023, Denver, CO, USA Trovato and Tobin, et al.

significantly impact the fidelity of the execution results. Transpila-
tion is the specific terminology referring to the compilation process
of transforming a high-level quantum circuit into an equivalent cir-
cuit that is compatible with the specifications of a quantum device,
including: the basis gate set, topology of the quantum chip, timing
constraints, fidelity of operations, etc. The goal of a transpiler is to
perform this transformation while minimizing the impact on the
functionality of the circuit and optimizing its performance delivery.

Several attempts on quantum transpilation have already been
made by the community (see a summary in Section 5), but there
are still technical gaps. On the one hand, commercial transpilers
such as those embedded in Qiskit [34] and Cirq [1] provide compre-
hensive functionalities, but are typically slow, especially for deep
circuits arising in practical quantum applications such as chem-
istry [4, 17], optimization [11, 44] and nuclear physics [14, 40].
Additionally, the slow transpilation speed limits their capability
to explore larger design space and integrate more advanced but
expensive optimizations. This is especially the case when dynamic
circuit generation and transpilation is needed, such as in variational
quantum algorithms (VQAs) [5, 38] and when optimized to mitigate
state-dependent bias at runtime [42].

On the other hand, most of the research studies in academia have
focused on specific transpilation techniques, such as gate decompo-
sition, circuit optimization, mapping and routing, etc. [23][49][48].
These approaches lack end-to-end demonstrations and are often
implemented and validated by embedding into or replacing part of
Python-based commercial frameworks such as Qiskit and Cirq. Con-
sequently, they are also constrained by the limitations of the under-
lying frameworks, such as slow speed, difficulties in launching large
circuits, binding to certain device features, lack of flexibility, and fre-
quent interface upgrades, etc. In this paper, we present QASMTrans,

Challenging Circuits

Simple Circuits

Figure 1: QASMTrans is designed to transpile challenging
deep circuits fromQASMBench [21], while broadly used tools
such as Qiskit cannot finish within around a minute.

an end-to-end, self-contained, light-weight quantum transpiler en-
tirely realized in C++ for effectively parsing and compiling large
QASM circuits. QASMTrans comprises four major components:

(1) An IO module that uses a QASM Paser for parsing an input
OpenQASM file, and translating it into a structure acting
as the internal intermediate representation (IR). The output
will export the transpiled QASM circuits for a particular
NISQ device, such as those provided by IBMQ, Rigetti, IonQ,
Quantinuum, etc.

(2) A Configuration module for preparing the coupling graph
of the device, generating the DAG for the circuit, and decom-
posing the 3-qubit gates into 1-qubit and 2-qubit gates.

(3) AnOptimizationmodule for the various optimization passes.
This includes decomposition into basis gates, routing, and
mapping. These passes are made with respect to the topology,
basis gate set, fidelity, and features of the circuit. The goal
of the backend optimization is to allow the circuits to run
more efficiently on the targeted NISQ devices or simulators.

(4) A main Transpiler component to do the routing and map-
ping and also decompose into basis gates based on specific
NISQ devices.

QASMTrans is primarily designed as an open-source transpiler
infrastructure serving as a baseline for implementing and validat-
ing advanced transpilation technologies while supporting novel
devices and computation models. We evaluate QASMTrans using
diverging circuits with some of them being quite challenging (from
4 to 420 qubits, and from 10 to 2.2M gates, see Figure 1) from QASM-
Bench [21]. Remarkably, most of the benchmarks can be completed
within a few seconds. Even the largest and most demanding bench-
mark that Qiskit cannot finish within several minutes, can be tran-
spiled by QASMTrans in only 3-7 seconds. This work thus makes
the following main contributions:

• We propose an end-to-end, self-contained, light-weighted
opensource quantum compiler in C++ that can significantly
reduce the transpilation time for a wide range of applications,
improving the efficiency of quantum computations on NISQ
devices.

• QASMTrans is equipped with optimization techniques for
generating specific basis gates towards different target ma-
chines or classical simulators.

• Through comprehensive experiments and analysis over mul-
tiple quantum platforms, we show that QASMTrans can
transpile circuits with comparable fidelity on real NISQ de-
vices from Rigetti, IBMQ, IonQ, and Quantinuum, but at a
much faster speed compared to existing transpilers such as
Qiskit and MQT-Qmap [45].

The remainder of this paper is structured as follows: Section 2
provides background information. Section 3 presents the QASM-
Trans transpiler. Section 4 shows the evaluation results. Section 5
summarizes related work about quantum transpilation. Section 6
concludes.

2 BACKGROUND
2.1 Noisy Intermediate-Scale Quantum (NISQ)
NISQ systems refer to near-term quantum platforms featuring fifty
to less than a thousand physical qubits [33]. These qubits are fab-
ricated based on various technologies, such as superconducting
[9, 35], trapped-ion [8, 19], photonic [2, 30], spin qubits [27, 32],

1469

QASMTrans: A QASM basedQuantum Transpiler Framework for NISQ Devices SC-W 2023, November 12–17, 2023, Denver, CO, USA

Table 1: OpenQASM gate definition (5 basic gates + 11 standard gates + 18 composition gates).

Gates Meaning Gates Meaning Gates Meaning
U3 3 parameter 2 pulse 1-qubit TDG conjugate of sqrt(S) CRZ Controlled RZ rotation
U2 2 parameter 1 pulse 1-qubit RX X-axis rotation CU1 Controlled phase rotation
U1 1 parameter 0 pulse 1-qubit RY Y-axis rotation CU3 Controlled U3
CX Controlled-NOT RZ Z-axis rotation RXX 2-qubit XX rotation
ID Idle gate or identity CZ Controlled phase RZZ 2-qubit ZZ rotation
X Pauli-X bit flip CY Controlled Y RCCX Relative-phase CXX
Y Pauli-Y bit and phase flip SWAP Swap RC3X Relative-phase 3-controlled X
Z Pauli-Z phase flip CH Controlled H C3X 3-controlled X
H Hadamard CCX Toffoli C3XSQRTX 3-controlled sqrt(X)
S sqrt(Z) phase CSWAP Fredkin C4X 4-controlled X

SDG conjugate of sqrt(Z) CRX Controlled RX rotation
T sqrt(S) phase CRY Controlled RY rotation

Figure 2: NISQ device topology: IBMQ-Guadalupe (left),
Rigetti-Aspen (middle) and IonQ-QPU (right).

neutral atoms [3, 13], etc. To accomplish the execution of a circuit,
the physical qubits need to stay coherent for a sufficiently long time.
However, before all the circuits can be executed on the real quan-
tum machine, it must (1) fit the basis gates of the quantum machine
and (2) meet the coupling constraints of the machine topology.

2.1.1 Basis Gates. Each NISQ device has its own basis gate set,
known as the quantum instruction set architecture (QISA). It defines
the basic operations that are physically supported by the underlying
platform. During quantum transpilation, all the logic gates will be
decomposed and transpiled into gate sequences purely formed by
basis gates. Table 2 shows the basis gate set for IBMQ, Rigetti, IonQ,
and Quantinuum devices. Typically, quantum device vendors only
provide profiling or calibration data for the basis gates (per qubit
or system-wide average), including T1, T2, duration, fidelity, etc.
These basis gates also represent the operations to be implemented
by a classical simulator.

2.1.2 Topology. Physical qubits in a quantum processor are in-
terconnected. In a quantum device, the 1-qubit gates are directly
performed on individual qubits. The 2-qubit gates, however, have
to be performed on a qubit-pair that is interconnected. This is
especially the case for superconducting devices (e.g., IBMQ and
Rigetti), where the connectivity of qubits follows a certain topology,
as shown in Figure 2. The topology thus limits the sites where
two-qubit gates can be performed: if a two-qubit gate is desired
for remote qubits, a series of SWAP gates are required to physically
move the two qubits to a connected tuple following the path defined
by the topology, known as routing. SWAP gates are costly, usually
achieved through three CNOT or CX gates.

These extra SWAPs are one of the major factors contributing to
deep circuits and considerable noise for superconducting devices,
as compared to contemporary small-scale trapped-ion devices prac-
ticing all-to-all connectivity (see Figure 2). Our previous study [39]
shows that, for a 17-gate variational circuit, from the 5-qubit IBMQ
Cairo to the 5-qubit IonQ QPU, a fidelity increase from 72% to 80%

Table 2: Basis gates for IBM-Q, Rigetti, IonQ and Quantinuum
NISQ devices.

NISQ Technology 1-qubit basis 2-qubit basis
IBMQ Superconducting ID, RZ, SX, X CX/ECR
Rigetti Superconducting RX, RZ CZ (XY)
IonQ Trapped-Ion GPI, GPI2, GZ MS

Quantinuum Trapped-Ion RX, RZ ZZ

(ideally 97.8%) has been observed. This is mainly due to the 7 extra
SWAP gates when transpiling to comply with the topology of IBMQ
Cairo.

2.2 QASM
OpenQASM (Open Quantum Assembly Language, we particularly
refer to OpenQASM 2.0 in this work) [10], also known colloqui-
ally as QASM, is an intermediate representation (IR) of quantum
instructions. QASM acts as a unified low-level assembly language
for IBMQ and other quantum machines. Many of these NISQ de-
vices, accessible through the IBMQ network [16], have been widely
explored by existing works. Table 1 lists the types of gates that are
defined in the QASM specification (i.e., the "qelib1.inc" header
file) [10]. Within these gates, the first five, i.e., U3, U2, U1, CX, and
ID, are basic gates that are expected to be supported by the quan-
tum backend. From X to RZ are standard gates defined atomically
in OpenQASM. The remaining gates from CZ to C4X are composi-
tion gates that are constructed by standard gates. These gates are
frequently used gates defined in qelib1.inc. OpenQASM 2.0 is
a low-level IR, which is executed sequentially without any loops,
branches, or jumps, making it very convenient for static analysis
and simulating in a classical simulator [20, 22]. A QASM code can
be directly launched in IBMQ or through Qiskit. With all these
benefits, QASMTrans uses QASM as the primary format for input
and output.

3 QASMTRANS TRANSPILER
We elaborate on the QASMTrans transpiler framework in this sec-
tion, The main structure is shown in Figure 3. QASMTrans contains
the following main components:

(1) Input/Output (IO):
• Input: QASMTrans starts with a QASM parser. The parser
reads the QASM file, and translates it into a gate IR. Mean-
while, the input module also extracts pertinent hardware
details from a JSON file that describes the backend device.

1470

SC-W 2023, November 12–17, 2023, Denver, CO, USA Trovato and Tobin, et al.

We plan to support other input formats such as QIR [29]
and Quil [37].

• Output: Once the transpilation is complete, the circuit
is saved to a new QASM file, primed for execution on
real quantum hardware. QIR [29] is another format to be
supported.

(2) QASMTrans Configuration:
• Gate Decomposition: In this phase, gates with three qubits
are methodically broken down into combinations of one-
and two-qubit gates. For example, the CCX gate will be
decomposed into CX and T gates.

• Directed Acyclic Graph (DAG): A DAG will be generated
for the gates describing the dependency. In the DAG, ev-
ery vertex represents a physical qubit, whereas each edge
represents a coupling link.

• Coupling Graph: We generate the coupling graph based
on the input hardware JSON file, where each vertex rep-
resents a physical qubit, and each edge represents the
link between qubits. The coupling graph is essential for
routing/mapping.

(3) QASMTrans Process:
• Routing and Mapping: This involves aligning the given
quantum circuit to the specific topology of different quan-
tum machines. To achieve this, we introduce SWAP gates
where necessary. As a starting point, we implement the
Sabre algorithm [23] that is also widely used in frame-
works such as Qiskit and XACC [28].

• Basis Gate Decomposition: Depending on the desired quan-
tum machines, like Rigetti or Quantinuum, the circuit
is further decomposed into the directly executable basis
gates of the specific hardware.

(4) Simulation-Oriented Optimization:
• Simulation-Aware Constrained Routing: To date, many quan-
tum circuits and algorithms are still evaluated in classical
simulators. Given the exponential cost of having more
qubits to simulate, in QASMTrans, we introduce a method
that can limit the number and index of qubits used for the
transpilation. This can significantly reduce the transpila-
tion time as well as simulation time.

• Qubit Priority Rescheduling: Based on user-specified qubit
priorities, QASMTrans can optimize and realign the qubit
mapping. This is especially useful for distributive classical
simulation, as the number of gates over globally shared
qubits can be minimized.

3.1 QASM Parser
The QASM parser is responsible for parsing the input OpenQASM
to the internal gate IR, which will be discussed in more detail below.

3.1.1 Tokenization using Lexertk. The parser begins its operation
by tokenizing the QASM text, a process that involves breaking down
the text into smaller chunks known as tokens. This is achieved by
incorporating Lexertk [31], a high-performance lexer tool written in
C++ and distributed through a single C++ header file. The parser of
QASMTrans uses Lexertk to scan through the QASM code and break
it down into various tokens. Each token is a string of characters that
conforms to the Backus–Naur Form (BNF), an important notation

technique for context-free grammars, defining a set of syntax rules
for valid tokens.

3.1.2 Qubit/Classical Register Management. The QASM parser au-
tomatically flattens the qubit register indices and translates them
into a singular range of qubit indices. This process significantly
enhances the system’s proficiency for transpilation and simulation
by replacing the typically used REG_NAME[INDEX] qubit address-
ing, seen in QASM, with a more streamlined one-dimensional qubit
range. Classical registers are used to store the outcomes of measure-
ments from qubit registers, typically achieved through commands
such as:

measure 𝑞 [0] → 𝑐 [0];
In this example, ‘q’ denotes a qubit register, and ‘c’ denotes a clas-
sical register. The QASM parser keeps track of the qubit register
remapping, ensuring accurate measurement operations.

Simulation
Oriented

Optimization

Simulation-aware
constraint Routing

User- Guide

Qubit Priority

Q2 < Q1 < Q0

Generate Coupling Graph
QASMTrans

Configuration
Coupling Graph

Decompose
3-qubit gates

Generate
DAG

QASMTrans
Transpile

Mapping
and Routing

Decompose into
basis gates

H S T

Rz π/2 sx Rz -3π/4

QASMTrans Parser

Input

qasm

Quantum Circuit
(from qasm)

Machine Hardware
Information (json)

CX_coupling :
[0_1,1_0…]

…
json

CX q[0], q[1];
H q[0];

…

Output

QIR Quil …

cx, rz, id, sx, x

u(𝜃,Φ), rz, zz gpi, gpi2, gz, ms

rx, ry, cz

Figure 3: QASMTrans framework, which includes four major
components: 1) Input/Output: the Input is the parser that
reads in QASM and stores them internally as gate IRs. The
Output saves the transpiled circuit in the QASM format. 2)
Configuration: perform pre-transpilation work such as gen-
erating the coupling graph, gate DAG, and 3-qubit gates de-
composition. 3) Simulation-oriented Optimization. 4) Tran-
spilation, including mapping, routing, and decomposition
into basis gates of the target device.

3.1.3 Gate Sets and Abstraction. In the rapidly evolving field of
quantum computing, it is crucial to have a robust and flexible sys-
tem capable of accommodating an extensive range of quantum
gates, from the most common to the more advanced. QASMTrans
currently supports all the gates (except C4X) defined by the Open-
QASM 2 specification, see Table 1.

The parser supports standard gates such as Pauli-X, Pauli-Y,
Pauli-Z, Hadamard, CNOT, and Toffoli, as well as parameterized
gates like RX, RY, RZ, and U gates. It also accommodates more com-
plex gates like the SWAP gate and the controlled versions of various
gates. These are by no means an exhaustive list, and the parser’s
design allows for easy extension to incorporate additional or newer
gate types.

Key to the flexibility and functionality of the QASMTrans is the
Gate IR. It is a custom C++ class that encapsulates four crucial
aspects of each quantum gate:

1471

QASMTrans: A QASM basedQuantum Transpiler Framework for NISQ Devices SC-W 2023, November 12–17, 2023, Denver, CO, USA

• Gate Name: Represents the type of quantum gate.
• Target Qubits: Specifies the individual qubits upon which
the quantum gate operation is performed.

• Gate Parameters: Contains the parameters relevant to cer-
tain quantum gates.

• Gate Matrix: Encapsulates the matrix representation of
quantum gate, stored as two arrays — one for the real and
the other for the imaginary components.

3.2 Transpile configuration
Before the transpilation process, we need to perform some prelimi-
nary configuration.

Generation Coupling Graph (full/limited). Based on the topol-
ogy of the hardware device, we generate a coupling graph that
embeds essential elements such as a distance matrix and an ad-
jacent_edge_list. According to the size of the topology, there are
two potential approaches: (i) Build the full graph for all the qubits
and links. This, however, introduces excessive overhead towards
large devices (e.g., the 433-qubit IBM Seattle). (ii) Alternatively,
and in most cases, the qubit number of a circuit is smaller than
that of the device. Thus, we can limit the qubits and links of the
device (through a partial coupling graph) that are taken into the
transpilation consideration, drastically shrinking the search space.

Directed Acyclic Graph (DAG) Generation. From the input cir-
cuit, a DAG can be constructed to indicate the gate dependency.
For example, nodes with an in-degree of zero can be executed im-
mediately without any dependency. Otherwise, any nodes with
non-zero in-degree require all of their parent nodes to be executed
beforehand to satisfy the dependency. Considering the efficiency,
we only maintain two lists: one is the front list that contains exe-
cutable gates; the other is the future list comprises gates for future
execution.

Decompose three-qubit gates. In our transpiler, we first decom-
pose all the 3-qubit gates into 1-qubit and 2-qubit gates, given most
of the quantum devices use 1-qubit and 2-qubit gates as the basis
gate set. For example, the widely used Toffoli gate, or CCX gate,
will be decomposed into 6 CX gates and 9 one-qubit gates.

3.3 Routing and mapping
After the initial decomposition of 3-qubit gates, the next step is
to map the virtual qubits to the physical qubits. Various strategies
exist for performing this mapping and routing, with each method
optimized for different targets. For instance, Sabre is designed to
minimize the number of swaps required [23]. Time-optimal qubit
mapping emphasizes minimizing the circuit depth [48]. The Noise-
Adaptive approach is geared towards minimizing the error of the
transpiled circuit [43].

In QASMTrans, we use Sabre as the primary approach, due to
its significant advantages in compilation time compared to the oth-
ers. The major remaining overhead in Sabre routing and mapping
includes: 1) After the execution of each gate, we need to update
the DAG and regenerate the new front list of gates with in-degree
equals to 0 in the DAG (if the gate is in the execution list, its depen-
dencymust have already been satisfied and it is ready for execution).
The original Sabre method traverses the entire circuit (i.e., all DAG

nodes) and identifies the gates that are ready to be executed. As
QASMTrans is designed to address very deep circuits, this cost of
traversing can be huge. To accelerate this process, we propose to
keep the same front layer for each step, but only delete the nodes
that are just executed, and fetch any new gates whose dependencies
are just resolved through the step. Given that in each time step,
only 𝑛 gates can be simultaneously executed, our proposed opti-
mization can essentially reduce the searching cost of Sabre from
𝑂 (𝐺) where 𝐺 is the total number of gates, to 𝑂 (𝑛) where 𝑛 is the
number of qubits. When the gate number is huge, the benefit of
this improvement can be tremendous.

2) When a SWAP operation is required, selecting the appropriate
SWAP requires the calculation of all possible swaps, creating a large
search space and significant overhead. This is particularly the case
for large machine targets. Consequently, we propose a new method
that prunes the pool of SWAP candidates by constraining the physical
qubit area. This will be discussed in Section 3.6.

3.4 Decompose to basis gates
Here we perform the final decomposition towards the basis gates
of the device after routing and mapping. The main consideration is
efficiency and simplicity, as decomposing into basis gates before
routing andmapping can drastically enlarge the search space during
routing and mapping.

The decomposition here is a translation from general gates to the
targeted basis gates. The basis gate set for IBMQ, Rigetti, Quantin-
uum, and IonQ can be found in Figure 3. The detailed translation
rules can be found in the open-source code of QASMTrans.

3.5 Statistics
Based on the circuits, QASMTrans can print out the following circuit
metrics based on statistics of the quantum gates in the circuit. The
detailed definition can be found in [21].

• Circuit Depth represents theminimum count of time-evolution
steps needed to complete a quantum circuit, calculated based
on standard QASM gates.

• Gate Density indicates the utilization of gate slots during
the time evolution of a quantum circuit, similar to pipeline
occupancy in classical processors.

• Retention Lifespan quantifies the maximum longevity of
a qubit within a system. Its relationship with the T1 and
T2 time of the device dictates the feasibility of the circuit
execution on the targeted device.

• Measurement Density evaluates the importance of mea-
surement operations in a circuit, with respect to the overall
induction fidelity.

• Entanglement Variance measures the balance of entangle-
ment across the qubits for a circuit. It indicates the level of
connectivity and the potential error reduction through an
advanced transpiler.

3.6 Simulation-oriented Optimization
As mentioned, most of the contemporary circuit inductions are
still performed through classical simulations. In QASMTrans, we
propose two classical simulation-oriented optimizations during

1472

SC-W 2023, November 12–17, 2023, Denver, CO, USA Trovato and Tobin, et al.

Table 3: Benchmark information, it shows the qubit number,
single-qubit and total gates, Depth of the circuit

Benchmarks CIrcuit Information
Name Qubits 1-q gate total gate Depth

square_root 18 1415 2313 1269
vqe_uccsd 8 5320 10K 7252
vqe_uccsd 24 767K 2.2M 1.1M

sat 11 53 53 51
bwt 21 66K 87K 53K
gcm 13 2387 3149 2447
hhl 10 114K 186K 147K
qaoa 6 222 276 110
qec 5 20 30 18
adder 4 17 27 12
adder 10 10 35 24
adder 64 93 212 78
bv 140 419 491 76
ghz 255 256 510 256
qft 320 153K 255K 2550
ising 420 4196 5034 16

transpilation to generate circuits that can be simulated more effi-
ciently.

Constrained qubit routing/mapping. During the routing and map-
ping phase, instead of considering all the physical qubits of the
device, we limit the number and coupling of qubits that will be
considered during the transpilation, based on the number of virtual
qubits used in the circuit. This is achieved by first adopting the
isomorphic algorithm to find the most relevant connected graph
from the hardware architecture, using the number of virtual qubits
as input. The qubits of the obtained graph should contain equal or
more qubits than the circuit virtual qubits, but less or equal to the
number of physical qubits in the device. We then refer to the routing
algorithm as normal. Although constrained routing and mapping
with partial graphs can lead to more swaps, the benefit of simu-
lating fewer qubits can extraordinarily speed up the transpilation
process.

User-guided qubit prioritization. Another simulation-oriented
optimization is to enforce user-defined qubit prioritization. Users
can specify a priority order such as 𝑞3 < 𝑞1 < 𝑞0 < 𝑞2, then for
classical simulation, we can perform a qubit remapping with respect
to this partial order. This is achieved by counting the number of
gates performed on each qubit, sorting, and then re-indexing the
qubits to assign high-priority qubits to perform more gates. For
example, if 𝑞2 shows the best performance or least error rate, which
is set to have the highest priority, the qubit with the most number of
gates can be remapped to it. On the other hand, if the coefficients of
𝑞3 are distributed across multiple nodes for large-scale distributive
simulation (i.e., a global qubit), because of the overwhelming cost
from inter-node communication, it is set to the lowest priority, we
would want the least number of gates to be mapped to 𝑞3.

4 EVALUATION
4.1 Experimental setup
We primarily use the NERSC Perlmutter HPC system for our eval-
uation. Perlmutter is built by HPE. Each of the Cray EX systems
is equipped with an AMD EPYC 7763 CPU and four NVIDIA A100
GPUs. The other platforms used for the transpilation are listed
in Table 6. We compare QASMTrans to two state-of-the-art and
most relevant quantum transpilers for comparison: Qiskit [34] (with
Sabre algorithm [23]) and MQT-Qmap [45]. We focus on transpi-
lation efficiency, quality, and fidelity. The efficiency is measured
by transpilation time. The quality is measured by the depth, total
number of gates, and number of CX gates of the transpiled circuit.
The fidelity is measured by calculating the fidelity of execution for
the transpiled circuit over five real quantum devices: IBM-Brisbane,
Rigetti-AspenM2, IonQ-Aria1 and Quantinuum-H1-1). We test on
different benchmark circuits varying from 10 qubits to 400 qubits
from QASMBench [21], We show all the benchmark information in
Table 3.

4.2 Transpilation Efficiency and Quality
The evaluation results are listed in Table 5. We use IBMQ devices as
the transpilation target so that: (i) the basis gate set is X, SX, CX, and
RZ; (ii) for topology, when the number of qubits of the circuit is less
than 27, we use the topology of IBMQ Toronto. When it is larger
than 27, we use the topology of the latest 433-qubit IBM Seattle as
the objective device.
Quality: Overall, QASMTrans can generate transpiled circuits with
comparable depth, gates and 2-qubit gates as Qiskit and Qmap.
The slight difference is due to the fact that as the initial effort,
QASMTrans hasn’t yet implemented or integrated advanced front-
end gate transformation & cancellation passes.
Efficiency: As listed, QASMTrans shows a tremendous perfor-
mance advantage over Qiskit and Qmap for the 16 benchmark cir-
cuits. The speedup can be as much as 1111× over Qiskit and 277×
over Qmap. In particular, for some challenging circuits, such as
the vqe_uccsd_n24 with 2.2M gates, and qft_n320 with 255K gates,
neither Qiskit nor Qmap can produce transpiled circuits within a
reasonable time (i.e., 1 minute), while QASM can accomplish in 7.9s
and 3s, respectively.
Scalability:We further look at the performance scalability. Figure 4
shows the scaling of the transpilation time with respect to the
number of gates of the input circuits for the various benchmarks.
As can be seen, the performance advantage over Qiskit and Qmap
is quite consistent.

4.3 Transpilation Fidelity
To evaluate the correctness of transpilation, we use the transpiled
circuits generated by Qiskit and QASMTrans as the inputs, and
launch them onto four real NISQ devices (IBMQ, Rigetti, Quantin-
uum, and IonQ) to assess the difference in their induction results,
shown in Figure 5. Please be aware that these input circuits, despite
having already been transpiled, may go through another round of
internal transpilation or optimization within the backend process-
ing of the NISQ device. This is not under our control. However, we

1473

QASMTrans: A QASM basedQuantum Transpiler Framework for NISQ Devices SC-W 2023, November 12–17, 2023, Denver, CO, USA

Table 5: Evaluation of QASMTrans compared to Qiskit and Qmap in terms of transpilation quality and efficiency. QT represents
our QASMTrans method ,O1/O2/O3 represent three optimization levels for qiskit.

Benchmarks Efficiency: Transpilation Time (ms) Quality: Transipled by Qiskit-O1/O2/O3/QASMTrans
Name # qubit Qiskit-O1 Qiskit-O2 Qiskit-O3 QMAP QT Ratio/O1 single-qubit gate two-qubit gate Depth

square_root 18 360 630 2800 50 10 36.00 1516/1417/2404/2078 2623/2518/2249/2851 2566/2518/2249/2641
vqe_uccsd 8 1400 2800 13120 1100 16 87.50 4392/3927/7667/9485 5842/5836/5339/706 8113/7796/9711/13K
vqe_uccsd 24 502000 1167000 4628000 272000 7910 63.46 634K/603K/1.6M/3/4M 2.3M/2.2M/2.1M/3.2M 1.7M/2.2M/2.1M/2.8M

sat 11 170 240 820 90 2 85.00 479/460/560/625 632/617/560/654 765/746/828/768
bwt 21 92000 167000 274000 21300 1910 48.17 268K/263K/485K/408K 635K/630K/584K/585K 504K/499K/546K/497K
gcm 13 320 490 3200 140 0.5 640.00 2386/2187/2352/2386 1354/1357/975/1407 3020/2936/2067/2935
hhl 10 32000 54000 147000 25600 283 113.07 139K/125K/173K/209K 89K/89K/60K/103K 199K/193K/152K/259K
qaoa 6 150 180 420 70 0.51 294.12 324/299/211/948 82/81/61/93 224/203/125/546
qec 5 80 80 130 9 0.074 1081.08 36/32/33/36 15/13/13/13 27/24/23/27
adder 4 80 80 130 20 0.072 1111.11 17/16/16/17 16/16/16/16 20/19/19/19
adder 10 110 110 250 30 0.46 239.13 101/99/131/109 129/120/115/155 191/188/195/200
adder 64 250 370 1190 130 82 3.05 701/698/1092/757 1586/1571/1276/1594 1083/1055/1021/1079
BV 140 130 230 990 90 10 13.00 837/837/969/838 453/389/297/756 332/282/316/375
GHZ 255 260 390 1500 70 54 4.81 3/3/257/3 3575/3543/2843/5426 3165/3163/2850/5110
QFT 320 86000 253000 990000 42100 3040 28.29 36K/19K/284K/23K 336K/305K/276K/342K 26K/19K/23K/29K
Ising 420 1150 2350 5200 420 150 7.67 2097/1960/2058/6296 6131/5825/4309/4702 258/253/160/352

102 103 104 105 106

Gate Number

10 1

100

101

102

103

104

105

106

Tr
an

sp
ila

tio
n

tim
e

(m
s)

QASMTrans
Qiskit
Qmap

Figure 4: Transpilation time with respect to the number of
gates of the input circuits. The advantage of QASMTrans over
Qiskit and Qmap is consistent.

argue that this will not significantly impact the fidelity results since
both input circuits go through the same backend processes.

As can be seen in Figure 5, the fidelity with Qiskit result is quite
consistent across input circuits and underlying hardware, with
< 1% deviation. This underscores the robustness and stability of
QASMTrans.

4.4 Optimization for Classical Simulation
Both the constrained qubit routing/mapping and user-guided qubit
prioritization presented in Section III-F can harvest performance
gain for classical simulation. Constrained qubit routing/mapping
limits the number of qubits for the simulation, for which the per-
formance gain is quite obvious. Here, we mainly focus on demon-
strating the benefit of user-guided qubit prioritization.

W-state_n3 Adder_n10 BV_n10 Tofolli_n30.0

0.2

0.4

0.6

0.8

Fid
el

ity
IBM-QiskitTrans
IBM-QASMTrans
Rigetti-QiskitTrans
Rigetti-QASMTrans

IonQ-QiskitTrans
IonQ-QASMtrans
Quantinuum-QiskitTrans
Quantinuum-QASMtrans

Figure 5: QASMTrans fidelity analysis compared with Qiskit
transpiler on different machines, the X-axis shows the bench-
marks, and Y-axis shows the fidelity obtained on real NISQ
machines (IBM ibm_brisbane, Rigetti Aspen-M2, IonQ Aria-1,
and Quantinuum H2) with respect to the Qiskit results.

We have already discussed why minimizing the number of gates
over the global qubits can reduce the overhead from communica-
tion. Here, we use SV-Sim [20] as the classical simulator. We use
all the 8 GPUs from 2 Perlmutter nodes for the distributive circuit
simulation. Consequently, 3 qubits are sharing their corresponding
coefficients across the 8 GPUs. Figure 6 shows the difference in simu-
lation time for the transpiled circuits with and without user-guided
qubit prioritization. The performance gain can be quite significant
given the log-scale of the Y-axis. This benefit mainly comes from
switching some expensive gates over the three global qubits to local
qubits through the final remapping of qubit prioritization.

1474

SC-W 2023, November 12–17, 2023, Denver, CO, USA Trovato and Tobin, et al.

adder_n28 bv_n14 sat_n11 adder_n10

102

103

Av
er

ag
e

Si
m

ul
at

io
n

Ti
m

e

47584149

169

88
57

20

864

334

Baseline
Qubit-priority-optimization

Figure 6: Performance gain in classical simulation through
user-guided qubit prioritization using SV-Sim for the tran-
spiled circuits on 8 GPUs of Perlmutter. Note, the Y-axis of
simulation time is in log-scale.

4.5 Platform Portability
We evaluate QASMTrans across different computing platforms,
from various HPC systems, including NERSC Perlmutter, OLCF
Frontier, Crusher, and Summit, ALCF Theta, to a desktop and laptop
(Intel P8168 and Apple M2), to an embedded device (JetsonTX2 with
ARM8). The platforms are listed in Table 6. The results are shown
in Figure 7. The transpilation on all the platforms can be finished
within 100s and most of them below 1s.

With these results, we have three observations: (i) QASMTrans
can be portable on various platforms, given its efficient C++ based
implementation and non-external library dependency (the json and
lexertk are included as header files). In particular, the successful
and efficient running on an ARM8 CPU shows the potential of
practical deployment on an FPGA of a real quantum system or
testbed, such as LBNL AQT. (ii) The transpilation speed across
applications circuits and platforms is consistent. (iii) The majority
(nearly 90%) of the transpilation time is devoted to routing and
mapping for the current implementation of QASMTrans.

5 RELATEDWORK
5.1 Quantum Intermediate Representation
In quantum computing, gate IR provides an essential abstraction
layer, offering a structured, machine-agnostic representation of
quantum circuits. Among the existing quantum IRs, the Microsoft
QIR [29] is an LLVM-based IR that defines a set of rules for repre-
senting quantum constructs. QIR attempts to serve as a common
interface between various quantum languages (e.g., Q#) and plat-
forms. QASM [10] is a widely recognized quantum assembly lan-
guage developed by IBM for its hardware platforms and software
tool-chain. Quil is a portable quantum instruction language devel-
oped by Rigetti. Lastly, XACC (eXtreme-scale ACCelerator) [28] is
a compilation framework for hybrid quantum-classical computing
architectures developed at ORNL, supporting IBM, Rigetti, D-Wave

Table 6: Platforms for Portability Evaluation

Platform CPU Vendor Core Mem Compiler
MacBook

Pro Apple M2 Apple 12 16GB AppleClang
14.0.3

Perlmutter Authentic
AMD AMD 128 256GB g++ 11.2.0

JetsonTX2 ARMV8 NVIDIA 4 8GB g++ 5.4.0

Crusher Authentic
AMD AMD 128 512GB g++ 12.2.0

Frontier Authentic
AMD AMD 128 512GB g++ 12.2.0

Summit POWER9 IBM 176 512GB g++ 9.1.0
Tonga Intel P8168 Intel 96 128GB g++ 11.2.0

Theta Intel Phi
7230 (KNL) Intel 256 192GB intel 19.1.0

QPUs, and various classical simulators such as SV-Sim [20] and
DM-Sim [22].

5.2 Quantum Transpilation
Quantum transpiler plays a crucial role in quantum computing by
translating high-level quantum algorithms into a series of low-level
hardware-specific instructions that quantum hardware can execute.
Qiskit is a widely used quantum software development package
developed by IBM. The Qiskit transpiler provides a flexible and
extensible framework, offering a wide array of compilation passes
that can be combined in different ways to create customized and
hardware-tailored transpilation pipelines.

In addition to Qiskit, there are various transpilers aiming at differ-
ent purposes: 1) application-oriented transpilation: These transpilers
focus on specific domain applications. For example, Paulihedral [24]
focuses on VQE, Twoqan [18] concentrates on QAOA circuits. 2)
hardware-oriented transpilation: These transpilers focus on support-
ing the new features of a particular quantum platform. For instance,
CaQR emphasizes the support for dynamic circuit generation and
the opportunities from qubit reset [15]. Pulse transpilers delve into
the nuances of low-level pulse scheduling, optimizing quantum
operations at the physical layer [7, 12, 36]. AutoComm [47] and
QuComm [46] present transpiler optimization techniques for dis-
tributive quantum devices. 3) Optimization for mapping/routing:
there are a bunch of works aiming at improving general transpila-
tion performance, like Sabre [23] and Zulhner [49] attempt to mini-
mize the number of additional gates in mapping/routing. TOQM
[48] aims at shrinking the depth of the transpiled circuit. Shi et
al. [36] presents the complete transpilation and optimization flow,
including gate aggregation and cancellation. QASMTrans falls into
the third category, aiming at improving the transpilation perfor-
mance of large and deep QASM circuits.

6 CONCLUSION
In this paper, we present QASMTrans, a C++ based quantum tran-
spiler framework for NISQ devices. It outperforms prevalent coun-
terparts, notably achieving up to more than 300× speedups over the
Qiskit transpiler. We demonstrate the quality, efficiency, and fidelity

1475

QASMTrans: A QASM basedQuantum Transpiler Framework for NISQ Devices SC-W 2023, November 12–17, 2023, Denver, CO, USA

Crusher Frontier DGX2 Jetson_TX2 Theta_Phi Apple_M2 Summit Perlmutter100

101

102

103

104

105

Co
m

pi
la

tio
n

Ti
m

e
(m

s)

Single CPU Single Core Compilation Result
bwt_n21 gcm_h6 hhl_n7 qaoa_n6 qram_n20 sat_n11 square_root_n18 vqe_n24 vqe_uccsd_n8

Figure 7: Compilation time on various platforms. The X-axis shows the names of different platforms, while the Y-axis is the
compilation time using a single core of a CPU of the system. The empty bars indicate the condition that the compilation time
is less than 1ms. The breakdown of each bar implies the time of (upper) routing & mapping, and (lower) decomposition. Please
be aware that the Y-axis is in the log scale.

of QASMTrans across various classical and quantum platforms. Fu-
ture work includes continuously improving QASMtrans by adding
new passes such as gate cancellation, new platform support such
as for distributed quantum computing and cavity-based systems,
as well as the support of new input/output formats such as QIR.

ACKNOWLEDGMENTS
This material is mainly based upon work supported by the U.S.
Department of Energy, Office of Science, National Quantum Infor-
mation Science Research Centers, Co-design Center for Quantum
Advantage (C2QA) under contract number DE-SC0012704. The con-
tribution from Meng Wang, Yufei Ding, and Travis Humble are
supported by the U.S. Department of Energy, Office of Science, Na-
tional Quantum Information Science Research Centers, Quantum
Science Center (QSC). This research used resources of the Oak Ridge
Leadership Computing Facility, which is a DOE Office of Science
User Facility supported under Contract DE-AC05-00OR22725. This
research used resources of the National Energy Research Scientific
Computing Center (NERSC), a U.S. Department of Energy Office of
Science User Facility located at Lawrence Berkeley National Lab-
oratory, operated under Contract No. DE-AC02-05CH11231. We
acknowledge support from Microsoft’s Azure Quantum for provid-
ing credits and access to the ion-trap quantum hardware. The Pacific
Northwest National Laboratory is operated by Battelle for the U.S.
Department of Energy under Contract DE-AC05-76RL01830.

REFERENCES
[1] [n. d.]. Cirq, a python framework for creating, editing, and invoking

Noisy Intermediate Scale Quantum (NISQ) circuits. ([n. d.]). url-
https://github.com/quantumlib/Cirq.

[2] Alán Aspuru-Guzik and Philip Walther. 2012. Photonic quantum simulators.
Nature physics 8, 4 (2012), 285–291.

[3] H-J Briegel, Tommaso Calarco, Dieter Jaksch, Juan Ignacio Cirac, and Peter Zoller.
2000. Quantum computing with neutral atoms. Journal of modern optics 47, 2-3
(2000), 415–451.

[4] Yudong Cao, Jonathan Romero, Jonathan P Olson, Matthias Degroote, Peter D
Johnson, Mária Kieferová, Ian D Kivlichan, Tim Menke, Borja Peropadre, Nico-
las PD Sawaya, et al. 2019. Quantum chemistry in the age of quantum computing.
Chemical reviews 119, 19 (2019), 10856–10915.

[5] Marco Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C Benjamin, Suguru
Endo, Keisuke Fujii, Jarrod R McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio,
et al. 2021. Variational quantum algorithms. Nature Reviews Physics 3, 9 (2021),
625–644.

[6] Christopher Chamberland, Guanyu Zhu, Theodore J Yoder, Jared B Hertzberg,
and Andrew W Cross. 2020. Topological and subsystem codes on low-degree
graphs with flag qubits. Physical Review X 10, 1 (2020), 011022.

[7] Yanhao Chen, Yuwei Jin, Fei Hua, Ari Hayes, Ang Li, Yunong Shi, and Eddy Z
Zhang. 2023. A Pulse Generation Framework with Augmented Program-aware
Basis Gates and Criticality Analysis. In 2023 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). IEEE, 773–786.

[8] Juan I Cirac and Peter Zoller. 1995. Quantum computations with cold trapped
ions. Physical review letters 74, 20 (1995), 4091.

[9] John Clarke and Frank K Wilhelm. 2008. Superconducting quantum bits. Nature
453, 7198 (2008), 1031–1042.

[10] Andrew W Cross, Lev S Bishop, John A Smolin, and Jay M Gambetta. 2017. Open
quantum assembly language. arXiv preprint arXiv:1707.03429 (2017).

[11] Vedran Dunjko andHans J Briegel. 2018. Machine learning & artificial intelligence
in the quantum domain: a review of recent progress. Reports on Progress in Physics
81, 7 (2018), 074001.

[12] Pranav Gokhale, Ali Javadi-Abhari, Nathan Earnest, Yunong Shi, and Frederic T
Chong. 2020. Optimized quantum compilation for near-term algorithms with
openpulse. In 2020 53rd Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO). IEEE, 186–200.

[13] Loïc Henriet, Lucas Beguin, Adrien Signoles, Thierry Lahaye, Antoine Browaeys,
Georges-Olivier Reymond, and Christophe Jurczak. 2020. Quantum computing
with neutral atoms. Quantum 4 (2020), 327.

[14] Zoe Holmes, Gopikrishnan Muraleedharan, Rolando D Somma, Yigit Subasi,
and Burak Şahinoğlu. 2022. Quantum algorithms from fluctuation theorems:
Thermal-state preparation. Quantum 6 (2022), 825.

[15] Fei Hua, Yuwei Jin, Yanhao Chen, Suhas Vittal, Kevin Krsulich, Lev S Bishop,
John Lapeyre, Ali Javadi-Abhari, and Eddy Z Zhang. 2023. CaQR: A Compiler-
Assisted Approach for Qubit Reuse through Dynamic Circuit. In Proceedings of
the 28th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3. 59–71.

[16] IBM. [n. d.]. IBM Quantum. URL: https://quantum-computing.ibm.com/.
[17] Walter Kauzmann. 2013. Quantum chemistry: an introduction. Elsevier.
[18] Lingling Lao and Dan E. Browne. 2021. 2QAN: A quantum compiler for 2-local

qubit Hamiltonian simulation algorithms. https://doi.org/10.48550/ARXIV.2108.
02099

[19] Dietrich Leibfried, Rainer Blatt, Christopher Monroe, and David Wineland. 2003.
Quantum dynamics of single trapped ions. Reviews of Modern Physics 75, 1 (2003),
281.

[20] Ang Li, Bo Fang, Christopher Granade, Guen Prawiroatmodjo, Bettina Heim,
Martin Roetteler, and Sriram Krishnamoorthy. 2021. SV-Sim: Scalable pgas-based
state vector simulation of quantum circuits. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
1–14.

[21] Ang Li, Samuel Stein, Sriram Krishnamoorthy, and James Ang. 2023. Qasmbench:
A low-level quantum benchmark suite for nisq evaluation and simulation. ACM
Transactions on Quantum Computing 4, 2 (2023), 1–26.

[22] Ang Li, Omer Subasi, Xiu Yang, and Sriram Krishnamoorthy. 2020. Density matrix
quantum circuit simulation via the BSP machine on modern GPU clusters. In
Sc20: international conference for high performance computing, networking, storage
and analysis. IEEE, 1–15.

[23] Gushu Li, Yufei Ding, and Yuan Xie. 2019. Tackling the qubit mapping problem
for NISQ-era quantum devices. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating

1476

https://doi.org/10.48550/ARXIV.2108.02099
https://doi.org/10.48550/ARXIV.2108.02099

SC-W 2023, November 12–17, 2023, Denver, CO, USA Trovato and Tobin, et al.

Systems. ACM, 1001–1014.
[24] Gushu Li, Anbang Wu, Yunong Shi, Ali Javadi-Abhari, Yufei Ding, and Yuan Xie.

2022. Paulihedral: a generalized block-wise compiler optimization framework
for Quantum simulation kernels. In Proceedings of the 27th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems. 554–569.

[25] Sophia Fuhui Lin, Sara Sussman, Casey Duckering, Pranav S Mundada,
JonathanM Baker, Rohan S Kumar, Andrew AHouck, and Frederic T Chong. 2022.
Let each quantum bit choose its basis gates. In 2022 55th IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 1042–1058.

[26] Filip B Maciejewski, Zoltán Zimborás, and Michał Oszmaniec. 2020. Mitigation of
readout noise in near-term quantum devices by classical post-processing based
on detector tomography. Quantum 4 (2020), 257.

[27] R Maurand, X Jehl, D Kotekar-Patil, A Corna, H Bohuslavskyi, R Laviéville, L
Hutin, S Barraud, M Vinet, M Sanquer, et al. 2016. A CMOS silicon spin qubit.
Nature communications 7, 1 (2016), 1–6.

[28] Alexander J McCaskey, Dmitry I Lyakh, Eugene F Dumitrescu, Sarah S Powers,
and Travis S Humble. 2020. XACC: a system-level software infrastructure for
heterogeneous quantum–classical computing. Quantum Science and Technology
5, 2 (2020), 024002.

[29] Microsoft. 2023. Quantum intermediate representation. https://learn.microsoft.
com/en-us/azure/quantum/concepts-qir

[30] Jeremy L O’Brien, Akira Furusawa, and Jelena Vučković. 2009. Photonic quantum
technologies. Nature Photonics 3, 12 (2009), 687.

[31] Arash Partow. [n. d.]. Simple C++ Lexer Toolkit Library. https://github.com/
ArashPartow/lexertk.

[32] Jarryd J Pla, Kuan Y Tan, Juan P Dehollain, Wee H Lim, John JL Morton, David N
Jamieson, Andrew S Dzurak, and Andrea Morello. 2012. A single-atom electron
spin qubit in silicon. Nature 489, 7417 (2012), 541–545.

[33] John Preskill. 2018. Quantum computing in the NISQ era and beyond. Quantum
2 (2018), 79.

[34] QISKit: Open Source Quantum Information Science Kit. [n. d.]. https://https:
//qiskit.org/.

[35] Chad Rigetti, Jay M Gambetta, Stefano Poletto, BLT Plourde, Jerry M Chow, AD
Córcoles, John A Smolin, Seth T Merkel, JR Rozen, George A Keefe, et al. 2012.
Superconducting qubit in a waveguide cavity with a coherence time approaching
0.1 ms. Physical Review B 86, 10 (2012), 100506.

[36] Yunong Shi, Nelson Leung, Pranav Gokhale, Zane Rossi, David I. Schuster, Henry
Hoffmann, and Frederic T. Chong. 2019. Optimized Compilation of Aggregated In-
structions for Realistic Quantum Computers. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages
and Operating Systems (Providence, RI, USA) (ASPLOS ’19). ACM, New York, NY,
USA, 1031–1044. https://doi.org/10.1145/3297858.3304018

[37] Robert S Smith, Michael J Curtis, and William J Zeng. 2016. A practical quantum
instruction set architecture. arXiv preprint arXiv:1608.03355 (2016).

[38] Samuel Stein, Nathan Wiebe, Yufei Ding, Peng Bo, Karol Kowalski, Nathan Baker,
James Ang, and Ang Li. 2022. EQC: ensembled quantum computing for variational
quantum algorithms. In Proceedings of the 49th Annual International Symposium
on Computer Architecture. 59–71.

[39] Samuel A Stein, Betis Baheri, Daniel Chen, Ying Mao, Qiang Guan, Ang Li, Shuai
Xu, and Caiwen Ding. 2022. Quclassi: A hybrid deep neural network architecture
based on quantum state fidelity. Proceedings of Machine Learning and Systems 4
(2022), 251–264.

[40] I Stetcu, A Baroni, and J Carlson. 2022. Projection algorithm for state preparation
on quantum computers. arXiv preprint arXiv:2211.10545 (2022).

[41] Swamit S. Tannu and Moinuddin Qureshi. 2019. Ensemble of Diverse Mappings:
Improving Reliability of Quantum Computers by Orchestrating Dissimilar Mis-
takes. In Proceedings of the 52nd Annual IEEE/ACM International Symposium onMi-
croarchitecture (Columbus, OH, USA) (MICRO ’52). Association for ComputingMa-
chinery, New York, NY, USA, 253–265. https://doi.org/10.1145/3352460.3358257

[42] Swamit S Tannu and Moinuddin K Qureshi. 2019. Mitigating measurement errors
in quantum computers by exploiting state-dependent bias. In Proceedings of the
52nd annual IEEE/ACM international symposium on microarchitecture. 279–290.

[43] Swamit S. Tannu and Moinuddin K. Qureshi. 2019. Not All Qubits Are Created
Equal: A Case for Variability-Aware Policies for NISQ-Era Quantum Computers.
In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems (Providence, RI, USA)
(ASPLOS ’19). ACM, New York, NY, USA, 987–999. https://doi.org/10.1145/
3297858.3304007

[44] Andreas Wichert. 2020. Principles of quantum artificial intelligence: quantum
problem solving and machine learning. World Scientific.

[45] Robert Wille and Lukas Burgholzer. 2023. MQT QMAP: efficient quantum circuit
mapping. In Proceedings of the 2023 International Symposium on Physical Design.
198–204.

[46] Anbang Wu, Yufei Ding, and Ang Li. 2022. CollComm: Enabling Efficient
Collective Quantum Communication Based on EPR buffering. arXiv preprint
arXiv:2208.06724 (2022).

[47] Anbang Wu, Hezi Zhang, Gushu Li, Alireza Shabani, Yuan Xie, and Yufei Ding.
2022. AutoComm: A Framework for Enabling Efficient Communication in Dis-
tributed Quantum Programs. In 2022 55th IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 1027–1041.

[48] Chi Zhang, Ari Hayes, Longfei Qiu, Yuwei Jin, Yanhao Chen, and Edd Z. Zhang.
2021. Time-Optimal Qubit Mapping. In Proceedings of the Twenty-Sixth Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’21). ACM, Virtual.

[49] Alwin Zulehner, Alexandru Paler, and Robert Wille. 2018. Efficient mapping of
quantum circuits to the IBM QX architectures. In 2018 Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE, 1135–1138.

1477

https://learn.microsoft.com/en-us/azure/quantum/concepts-qir
https://learn.microsoft.com/en-us/azure/quantum/concepts-qir
https://github.com/ArashPartow/lexertk
https://github.com/ArashPartow/lexertk
https://https://qiskit.org/
https://https://qiskit.org/
https://doi.org/10.1145/3297858.3304018
https://doi.org/10.1145/3352460.3358257
https://doi.org/10.1145/3297858.3304007
https://doi.org/10.1145/3297858.3304007

	Abstract
	1 Introduction
	2 background
	2.1 Noisy Intermediate-Scale Quantum (NISQ)
	2.2 QASM

	3 QASMTrans Transpiler
	3.1 QASM Parser
	3.2 Transpile configuration
	3.3 Routing and mapping
	3.4 Decompose to basis gates
	3.5 Statistics
	3.6 Simulation-oriented Optimization

	4 Evaluation
	4.1 Experimental setup
	4.2 Transpilation Efficiency and Quality
	4.3 Transpilation Fidelity
	4.4 Optimization for Classical Simulation
	4.5 Platform Portability

	5 Related Work
	5.1 Quantum Intermediate Representation
	5.2 Quantum Transpilation

	6 Conclusion
	Acknowledgments
	References

